DC-TO-DC CONVERTER CONTROL CIRCUITS

IL34063A

The IL34063A is a monolithic control circuit containing the primary functions required for DC-to-DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components.

FEATURES

- Operation from 3.0 V to 40 V Input
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.5 A
- Output Voltage Adjustable
- Frequency Operation to 100 kHz
- Precision 2\% Reference

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	40	Vdc
Comparator Input Voltage Range	$\mathrm{V}_{\text {IR }}$	-0.3 to +40	Vdc
Switch Collector Voltage	$\mathrm{V}_{\text {(switch) }}$	40	Vdc
Switch Emitter Voltage (Vpin $1=40 \mathrm{~V}$)	$\mathrm{V}_{\mathrm{E} \text { (switch) }}$	40	Vdc
Switch Collector to Emitter Voltage	$\mathrm{V}_{\text {CE(switch) }}$	40	Vdc
Driver Collector Voltage	$\mathrm{I}_{\text {C(driver) }}$	40	Vdc
Driver Collector Current (Note 1)	$\mathrm{I}_{\text {C(driver) }}$	100	mA
Switch Current	$\mathrm{I}_{\text {SW }}$	1.5	A
Power Dissipation and Thermal Characteristics Ceramic Package, U Suffix $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Thermal Resistance Plastic Package, P Suffix $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Thermal Resistance SOIC Package, D Suffix TA $=+25^{\circ} \mathrm{C}$ Thermal Resistance	$\begin{array}{\|l} \mathrm{P}_{\mathrm{D}} \\ \mathrm{R}_{\theta \mathrm{JA}} \\ \mathrm{P}_{\mathrm{D}} \\ \mathrm{R}_{\theta \mathrm{JA}} \\ \mathrm{P}_{\mathrm{D}} \\ \mathrm{R}_{\theta \mathrm{JA}} \\ \hline \end{array}$	$\begin{array}{\|l\|} 1.25 \\ 100 \\ 1.25 \\ 100 \\ 625 \\ 160 \\ \hline \end{array}$	W ${ }^{\circ} \mathrm{C} / \mathrm{W}$ W ${ }^{\circ} \mathrm{C} / \mathrm{W}$ $\mathrm{mW}{ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature	TJ	+150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-65to+150	${ }^{\circ} \mathrm{C}$

[^0]ORDERING INFORMATION

Device	Temperature Range	Package
34063 AD	0° to $+70^{\circ} \mathrm{C}$	SO-8
		Plastic DIP

ELECTRICAL CHARACTERICISTICS

($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified.)

Characteristics	Symbol	Min	Typ	Max	Unit
OSCILLATOR					
Frequency ($\left.\mathrm{V}_{\text {Pin } 5}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	fosc	24	33	42	kHz
Charge Current ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	Ichg	24	33	42	$\mu \mathrm{A}$
Discharge Current ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	Idischg	140	200	260	$\mu \mathrm{A}$
Discharge to Charge Current Ratio (Pin7 to Vcc, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	Idischg/Ichg	5.2	6.2	7.5	-
Current Limit Sense Voltage (Ichg = Idischg, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	Vipk(sense)	250	300	350	mV
OUTPUT SWITCH (Note 3)					
Saturation Voltage, Darlington Connection ($\mathrm{I}_{\mathrm{sw}}=1.0 \mathrm{~A}$, Pins 1, 8 connected)	$\mathrm{V}_{\text {CE }}$ (sat)	-	1.0	1.3	V
Saturation Voltage ($\mathrm{I}_{\mathrm{SW}}=1.0 \mathrm{~A}, \mathrm{R}_{\mathrm{Pin} 8}=82 \Omega$ to V_{CC}. Forced $\beta=20$)	$\mathrm{V}_{\text {CE }}$ (sat)	-	0.45	0.7	V
DC Current Gain ($\mathrm{I}_{\mathrm{SW}}=1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}{ }^{=} 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	h_{FE}	50	120	-	-
Collector Off-State Current ($\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V}$)	I_{C} (off)	-	0.01	100	$\mu \mathrm{A}$
COMPARATOR					
$\begin{gathered} \text { Threshold Voltage }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\ \left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {LOw }} \text { to } \mathrm{T}_{\text {HIGH }}\right) \end{gathered}$	Vth	$\begin{aligned} & \hline 1.225 \\ & 1.21 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.25 \\ & - \end{aligned}$	$\begin{aligned} & \hline 1.275 \\ & 1.29 \\ & \hline \end{aligned}$	V
Threshold Voltage ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)^{* *}$	Vth	1.2375	1.25	1.2625	V
Threshold Voltage Line Regulation ($\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}$ to 40 V)	Regline		1.4	5.0	mV
Input Bias Current (Vin=0V)	I_{IB}	-	-40	-400	nA
TOTAL DEVICE					
Supply Current ($\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=10 \mathrm{nF}, \mathrm{V}_{\text {pin7 }}=\mathrm{V}_{\mathrm{CC}}$. $\mathrm{V}_{\text {Pin5 }}>$ Vth, Pin $2=$ Gnd, Remaining pins open)	I_{CC}		2.5	4.0	mA

NOTES:

1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain Junction temperature as close to ambient temperature as possible 3. If the output switch is driven into hard saturation (non Darlington configuration) at low switch currents ($<300 \mathrm{~mA}$) and high driver currents ($>30 \mathrm{~mA}$), it may take up to $2.0 \mu \mathrm{~s}$ to come out of saturation This condition will shorten the off' time at frequencies > 30 kHz , and is magnified at high temperatures This condition does not occur with a Darlington configuration, since the output switch cannot saturate If a non Darlington configuration is used, the following output drive condition is recommended
Forced β of output switch $=\mathrm{I}_{\mathrm{C}}$, output/(Ic, driver - $7.0 \mathrm{~mA}^{*}$) >10
*The 100Ω. resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts
**Possible version for shipment

TYPICAL APPLICATION CIRCUITS

Step-Up Converter

Test Condition ($\mathrm{V}_{\text {OUT }}=28 \mathrm{~V}$)

Test	Conditions	Value (Typ)	Unit
Line Regulation	$\mathrm{V}_{\mathrm{IN}}=8$ to $16 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	30	mV
Load Regulation	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=75$ to 175 mA	10	mV
Output Ripple	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	300	mV
Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	89	$\%$

Test Condition ($\mathrm{V}_{\text {OuT }}=5 \mathrm{~V}$)

Test	Conditions	Value (Typ)	Unit
Line Regulation	$\mathrm{V}_{\text {IN }}=15$ to $25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	5	mV
Load Regulation	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=50$ to 500 mA	30	mV
Output Ripple	$\mathrm{V}_{\text {IN }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	100	mV
Efficiency	$\mathrm{V}_{\text {IN }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	80	$\%$
ISC	$\mathrm{V}_{\text {IN }}=25 \mathrm{~V}, \mathrm{RLOAD}=0.1 \Omega$	1.2	A

Voltage Inverting Converter

Test Condition ($\mathrm{V}_{\text {OUT }}=-12 \mathrm{~V}$)

Test	Conditions	Value (Typ)	Unit
Line Regulation	$\mathrm{V}_{\mathrm{IN}}=4.5$ to $6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	15	mV
Load Regulation	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10$ to 100 mA	20	mV
Output Ripple	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	230	mV
Efficiency	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	58	$\%$
ISC	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{RLOAD}=0.1 \Omega$	0.9	A

Calculation

Parameter	Step-Up (Discontinuous mode)	Step-Down (Continuous mode)	Voltage Inverting (Discontinuous mode)
$\mathrm{t}_{\text {on }} / \mathrm{t}_{\text {off }}$	$\mathrm{V}_{\text {out }}+\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\text {in(min) }}$	$\mathrm{V}_{\text {out }}+\mathrm{V}_{\mathrm{F}}$	$\left\|\mathrm{V}_{\text {out }}\right\|+\mathrm{V}_{\mathrm{F}}$
	$\mathrm{V}_{\text {in(min) }}-\mathrm{V}_{\text {sat }}$	$\mathrm{V}_{\text {in(min) }}-\mathrm{V}_{\text {sat }}-\mathrm{V}_{\text {out }}$	$\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {sat }}$
$\left(\mathrm{t}_{\text {on }}+\mathrm{t}_{\text {off }}\right) \mathrm{max}$	$1 / \mathrm{f}_{\text {min }}$	$1 / \mathrm{f}_{\text {min }}$	$1 / \mathrm{f}_{\text {min }}$
C_{T}	$4.5 \times 10^{-5} \mathrm{t}_{\text {on }}$	$4.5 \times 10^{-5} \mathrm{t}_{\text {on }}$	$4.5 \times 10^{-5} \mathrm{t}_{\text {on }}$
$\mathrm{I}_{\mathrm{PK} \text { (switch) }}$	$2 \mathrm{I}_{\text {out }(\text { max }}\left[\left(\mathrm{t}_{\text {on }} / \mathrm{t}_{\text {off }}\right)+1\right]$	$2 \mathrm{I}_{\text {out(max) }}$	$\left.2 \mathrm{I}_{\text {out(max) }}\left[\mathrm{t}_{\text {on }} / \mathrm{t}_{\text {off }}\right)+1\right]$
$\mathrm{R}_{\text {SC }}$	$0.3 / \mathrm{I}_{\mathrm{PK}(\text { switch })}$	0.3/ $\mathrm{IFK}_{\text {(switch) }}$	$0.3 / \mathrm{I}_{\mathrm{PK} \text { (switch) }}$
C_{0}	$\equiv \frac{\mathrm{I}_{\text {out }} \mathrm{t}_{\mathrm{on}}}{\mathrm{~V}_{\text {ripple(p-p) }}}$	$\frac{\mathrm{I}_{\mathrm{PK}(\text { switch })}\left(\mathrm{t}_{\text {on }}+\mathrm{t}_{\text {off }}\right)}{8 \mathrm{~V}_{\text {rimple(n-n) }}}$	$\equiv \frac{\mathrm{I}_{\text {out }} \mathrm{t}_{\mathrm{on}}}{\mathrm{~V}_{\text {ripple(}(p-\mathrm{p})}}$
L(min)	$\frac{\mathrm{V}_{\text {in(min) }}-\mathrm{V}_{\text {sat }}}{\mathrm{I}_{\mathrm{PK}(\text { switch })}} \mathrm{t}_{\mathrm{on}(\max)}$	$\frac{\mathrm{V}_{\text {in(min) })}-\mathrm{V}_{\text {sat }}-\mathrm{V}_{\text {out }}}{\mathrm{I}_{\mathrm{PK} \text { (switch) }}} \mathrm{t}_{\text {on(max) }}$	$\frac{\mathrm{V}_{\mathrm{in}(\text { min })}-\mathrm{V}_{\text {sat }}}{\mathrm{I}_{\mathrm{PK}(\text { switch })}} \mathrm{t}_{\text {on(max) }}$

NOTES:

$\mathrm{V}_{\text {sat }}=$ Saturation voltage of the output switch
$\mathrm{V}_{\mathrm{F}}=$ Forward voltage drop of the output rectifier
THE FOLLOWING POWER SUPPLY CHARACTERISTICS MUST BE CHOSEN:
$\mathrm{V}_{\text {in }}=$ Nominal input voltage
$\mathrm{V}_{\text {out }}=$ Desired output voltage, $\left|\mathrm{V}_{\text {out }}\right|=1.25\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right)$
$I_{\text {out }}=$ Desired output current
fmin $=$ Minimum desired output switching frequency at the selected values of Vin and lo $\mathrm{V}_{\text {ripple }}=$ Desired peak to peak output ripple voltage. In practice, the calculated capacitor value will and to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.

Step-up With External NPN Switch

Step-down With External NPN Switch

Step-down With External PNP Switch

Voltage Inverting With External NPN Switch

Voltage Inverting With External PNP Saturated Switch

Dual Output Voltage

Higher Output Power, Higher Input Voltage

N SUFFIX PLASTIC DIP

(MS - 001BA)

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	8.51	10.16
\mathbf{B}	6.1	7.11
\mathbf{C}		5.33
\mathbf{D}	0.36	0.56
\mathbf{F}	1.14	1.78
\mathbf{G}	2.54	
\mathbf{H}	7.62	
\mathbf{J}	0°	10°
\mathbf{K}	2.92	3.81
\mathbf{L}	7.62	8.26
\mathbf{M}	0.2	0.36
\mathbf{N}	0.38	

D SUFFIX SOIC
 (MS - 012AA)

NOTES:

1. Dimensions A and B do not include mold flash or protrusion.
2. Maximum mold flash or protrusion $0.15 \mathrm{~mm}(0.006)$ per side for A; for B-0.25 mm (0.010) per side.

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	4.8	5
\mathbf{B}	3.8	4
\mathbf{C}	1.35	1.75
\mathbf{D}	0.33	0.51
\mathbf{F}	0.4	1.27
\mathbf{G}	1.27	
\mathbf{H}	5.72	
\mathbf{J}	0°	8°
\mathbf{K}	0.1	0.25
\mathbf{M}	0.19	0.25
\mathbf{P}	5.8	6.2
\mathbf{R}	0.25	0.5

[^0]: * Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.
 Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

